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Abstract-- This paper presents a multi-objective real-coded Genetic Algorithm (RCGA) to solve the load flow problem 

(LFP). Since the load flow problem has multiple solutions, the local minima and the premature convergence are some of 

the drawbacks of the conventional methods. The GA is a search problem which uses a population of candidate solutions 

for solving the problem, thus reducing the possibility of ending at a local minima. A real-coded multi-objective GA is used 

since LFP involves a large number of variables, where all decision variables (unknowns) are expressed as real numbers. 

Explicit conversion to binary does not take place. A reduction of computational effort is an obvious advantage of a real-

coded GA. Another advantage is that, an absolute precision is now attainable by making it possible to overcome the 

crucial decision of how many bits are needed to represent potential solutions.  

   In LFP the cost function has two conflicting objectives, which are the mismatch active and reactive powers. The most 

straightforward approach to multi-objective optimization is the "Sum of Weighted Cost Functions". This approach is to 

weight each function and add them together. This approach is adopted in this research for its simplicity, easy of 

programming and gives the required accuracy. The application of GA for solving LFP of small-scale systems is on-line 

(real-time) solutions. But for large-scale systems, the CPU computational time for high accuracy convergence is large. In 

this paper, a sparsity technique and optimal ordering for the sparse matrices (which have too many elements of zero 

values) are implemented in order to reduce the storage requirement and simplify some arithmetic operations to reduce the 

total computing time for high accurate solution. The sparsity technique is achieved by entering only the non-zero 

elements; also two identification vectors are needed to identify the exact location of the elements in the original matrix. 

The proposed method was demonstrated on different test systems, such as 14-bus and 30-bus IEEE test systems, and a 

362-bus with 599-branches IRAQI NATIONAL GRID. From the obtained results, it is concluded that the proposed 

method presents a highly accurate solution for the unknown variables, a large saving in storage requirements and a 

reasonable reduction in total computing time
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I. INTRODUCTION 

       The power flow problem, which is performed to determine the power system static states (voltage magnitudes and voltage 

phase angles) at each busbar to find the steady state operating condition of a system, is very important and the most frequently 

carried out study by electrical power utilities for power system on-line operation, planning and control. The mathematical 

formulation of the electrical power flow problem results in a set of non-linear algebraic equations. The power flow problem has 

multiple solutions [1]. The numerical methods and some of the artificial intelligence methods suffer from the local minima 

problem. Also there are many criteria which should be taken into consideration such as the speed of solution, storage requirement 

and the degree of solution accuracy. With increasing computer speeds, researchers are increasingly applying artificial and 

computational intelligence techniques, especially in power system problems. These methods offer several advantages over 

traditional numerical methods. Among these techniques is that of genetic algorithm. Genetic algorithms (GAs) are efficient 

stochastic search algorithms that emulate natural phenomena. They have been used successfully to solve a wide range of 

optimization problems. Because of existence of local optima, these algorithms offer promise in solving large-scale problems. An 

implementing "survival of the fittest" strategy. Genetic algorithm solves linear and nonlinear problems by 

exploring all regions of the search space and exponentially exploiting promising areas through selection, crossover, and mutation 

operations. They have been proven to be an effective and flexible optimization tool that can find optimal or near-optimal solutions 

[2]. In this study, an improved genetic algorithm solution of the load flow problem is presented in order to minimize the total 

active and reactive power mismatches of the given systems, a real-coded genetic algorithm has been implemented.                                               

                                                                                                     

II. THE REAL-CODED GENETIC ALGORITHM (RCGA) 

   The binary genetic algorithm is conceived to solve many optimization problems that stump traditional techniques. But, what if 

we are attempting to solve a problem where the values of the variables are continuous and we want to define them to the full 

machine precision? In such a problem, each variable requires many bits to represent it. If the number of variables is large, the size 

of the chromosome is also large. Of course, ones and zeros are not the only way to represent a variable. One could, in principle, 

use any representation conceivable for encoding the variables. When the variables are naturally quantized, the binary genetic 
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algorithm fits nicely. However, when the variables are continuous, it is more logical to represent them by floating-point numbers. 

In addition, since the binary genetic algorithm has its precision limited by the binary representation of variables, using floating-

point numbers instead easily allows representation to the machine precision. This real-coded genetic algorithm also has the 

advantage of requiring less storage than the binary genetic algorithm because a single floating-point number represents the 

variable instead of Nbits integers. The RCGA is inherently faster than the binary genetic algorithm, because the chromosomes do 

not have to be decoded prior to the evaluation of the cost function (objective function) [2].                                                              

                                                                                                    

III. MATHEMATICAL DESCRIPTION AND RCGA OPERATORS 

        This genetic algorithm is very similar to the binary genetic algorithm, but the primary difference is the fact that variables are 

no longer represented by bits of zeros and ones, but instead by floating-point numbers over whatever range is deemed appropriate. 

However, this simple fact adds some nuances to the application technique that must be carefully considered. In particular, it will 

be presented different crossover and mutation operators.                                                    

A. The variables and cost function                                                                                                                                                               

       A cost function generates an output from a set of input variables (a chromosome). The cost function may be a mathematical 

function, or from experiment. The objective is to modify the output in some desirable fashion by finding the appropriate values 

for the input variables. The goal is to solve some optimization problem where we search for an optimum (minimum) solution in 

terms of the variables of the problem. The term fitness is extensively used to designate the output of the objective function in the 

genetic algorithm literature. Fitness implies a maximization problem. Fitness has a closer association with biology than the term 

cost, thus genetic algorithm mimics Darwin’s evolution process by we have adopted the term cost, since most of the optimization 

literature deals with minimization, hence cost. They are equivalent. If the chromosome has Nvar variables (N-dimensional 

optimization problem) given by (b1, b2,……, bNvar), then the chromosome is written as an array with (1×Nvar) elements so that:                                    

 

chromosome = [b1, b2, b3, ………, bNvar]                                                                                                                                           (1)  

 

In this case, the variable values are represented as floating-point numbers. Each chromosome has a cost found by evaluating the 

cost function (f) at the variables (b1, b2, …, bNvar).                                                                                    

 

cost = f(chromosome) = f(b1,b2,…,bNvar)                                                                                                                                           (2)  

 

Equations (1) and (2) along with applicable constraints constitute the problem to be solved. Our primary problem in this research 

is the continuous functions introduced below. The two cost functions are:                       

                         N 

ΔPi=Pi
sp

–│Vi│∑│Vk│(Gikcosθik+Biksinθik)                                                                                                                                      (3) 

                         k=1  

for generator buses, and load buses, "sp" is specified value 

                          N 

ΔQi = Qi
sp

–│Vi│∑│Vk│(Giksinθik–Bikcosθik)                                                                                                                                   (4) 

                         k=1  

for load busses only, where θik = θi – θk, and  yik=Gik - jBik is the branch admittance between buses i and k. The nodal admittance 

matrix [Y] of a power system, which is the main input data to the computerized algorithm, is a highly sparse, square and 

symmetric matrix. ΔPi is the mismatch active power at bus (i) and ΔQi is the mismatch reactive power at 

bus (i). (Vi, Vk, θi, θk)    are the voltage magnitude and angle at busses (i) and (k) respectively, which are the variables of the two 

cost functions and N is the number of buses [3].                                

B. Variable encoding, precision and bounds                                                                                                                                           

     Here, the difference between binary and RCGA is shown. It is no longer needed to consider how many bits are necessary to 

represent accurately a value. Instead, (V) and (θ) have continuous values that are limited between appropriate bounds which are in 

our problem, 0.95 ≤ │V│ ≤ 1.05 p.u. and -20 ≤ θ ≤ 20 [3]. Although the values are continuous, a digital computer represents 

numbers by a finite number of bits. When we refer to the RCGA, it means that the computer uses its internal precision and round 

off to define the precision of the value. Now, the algorithm is limited in precision to the round off error of the computer. Since the 

genetic algorithm is a search technique, it must be limited to exploring a reasonable region of variable space. Sometimes, this is 

done by imposing a constraint on the problem. If one does not know the initial search region, there must be enough diversity in 

the initial population to explore a reasonably sized variable space before focusing on the most promising regions.       
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C. Initial population 

 

      The genetic algorithm starts with a group of chromosomes known as the population. We define an initial population of (Nind) 

chromosomes. A matrix represents the population with each row in the matrix being a (1×Nvar) array (chromosome) of continuous 

values. Given an initial population of (Nind) chromosomes, the full matrix of (Nind×Nvar) random values is generated. All variables 

are normalized to have values between (0) and (1), the range of a uniform random number generator. The values of a variable are 

"unnormalized" in the cost function. If the range of values is between (blo) and (bhi), then the unnormalized values are given by: 

 

b=(bhi–blo)bnorm+blo                                                                                                                                                                

(5) 

 

Where, bhi: highest number in the variable range.   blo: lowest number in the variable range. bnorm : normalized value of variable. 

This society of chromosomes is not a democracy: the individual chromosomes are not all created equal. Each one’s worth is 

assessed by the cost function. So at this point, the chromosomes are passed to the cost function for evaluation. In this research, we 

use a population size of 20 chromosomes for 14-bus IEEE system, 200 chromosomes for 30-bus IEEE systems and 500 

chromosomes for Iraqi National Grid.                                                                                                                                                                                                                                                                                                               

 

D. Natural selection                                                                                    

 

     Survival of the fittest translates into discarding the chromosomes with the highest cost. First, the(Nind) costs and associated 

chromosomes are ranked from lowest cost to highest cost. Then, only the best are selected to continue, 

while the rest are deleted. The selection rate,(Xrate), is the fraction of(Nind)that survives for the next step of mating. The number of 

chromosomes that are kept each generation is: 

               Nkeep = Xrate.Nind                                                                                                                                                                   (6) 

Natural selection occurs each generation or iteration of the algorithm. Of the (Nind) chromosomes, only the top (Nkeep) survive for 

mating, and the bottom (Nind – Nkeep) are discarded to make room for the new offspring. Letting only a few chromosomes survive 

to the next generation limits the available genes in the offspring. Keeping too many chromosomes allows bad performers a chance 

to contribute their traits to the next generation.  We use  50% (Xrate=0.5) in the natural selection process. Another approach to 

natural selection is called thresholding is used in this research. In this approach, all chromosomes that have a cost lower than 

some threshold survive. An attractive feature of this technique is that the population does not have to be sorted.  

E. Selection 

 

     In this process, two chromosomes are selected from the mating pool of (Nkeep) chromosomes to produce two new offspring. 

Pairing takes place in the mating population until (Nind – Nkeep) offspring are born to replace the discarded chromosomes. Pairing 

chromosomes in a genetic algorithm can be as interesting and varied as pairing in an animal species. Two types of selection are 

used in this research, which are: 

 

E.1 Rank-weighted roulette wheel                                                                                                                                                      

  This approach uses a uniform random number generator to select chromosomes. The row numbers of the parents are found 

using: 

 

ma = ceil (Nkeep * rand(1, Nkeep/2)) 

pa =ceil(Nkeep * rand(1, Nkeep/2)),       Where ceil rounds the value to the next highest integer.  

 

This approach is problem independent and finds the probability from the rank of the chromosome. Rank weighting is slightly 

more difficult to program than the other selection types. Small populations have a high probability of selecting the same 

chromosome. The probabilities only have to be calculated once. We tend to use rank weighting because the probabilities don’t 

change each generation. 

 

E.2 Tournament selection 

      Another approach that closely mimics mating competition in nature is to randomly pick a small subset of chromosomes (two 

or three) from the mating pool, and the chromosome with the lowest cost in this subset becomes a parent. The tournament repeats 

for every parent needed. Thresholding and tournament selection make a nice pair, because the population never needs to be 

sorted. Tournament selection works best for large population sizes because sorting becomes time-consuming for large 

populations. Each of the parent selection schemes results in a different set of parents. As such, the composition of the next 

generation is different for each selection scheme. Roulette-wheel and tournament selection are standard for most genetic 

algorithms. It is very difficult to give advice on which selection scheme works best. In our problem, we follow the roulette-wheel 

and tournament parent selection procedures [4].                                                                        
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F. Crossover 

        For the binary algorithm, two parents are chosen, and the offspring are some combination of these parents. Many different 

approaches have been tried for crossing over in real-coded genetic algorithm. The simplest methods choose one or more points in 

the chromosome to mark as the crossover points. Then the variables between these points are merely swapped between the two 

parents. The problem with these point crossover methods is that no new information are introduced, each continuous value that 

was randomly initiated in the initial population is propagated to the next generation, only in different combinations. Although this 

strategy works fine for binary representations, there is now a continuum of values, and in this continuum we are merely 

interchanging two data points. These approaches totally rely on mutation to introduce new genetic material. The blending 

methods [4, 5] remedy this problem by finding ways to combine variable values from the two parents into new variable values in 

the offspring. A single offspring variable value (bnew) comes from a combination of the two corresponding parent variable values: 

bnew=βbmn+(1–β)bdn                                                                                                                                                              (7) 

Where, β = random number on the interval [0, 1], bmn = n
th

 variable in the mother chromosome, bdn = n
th

 variable in the father 

chromosome. 

The same variable of the second offspring is merely the complement of the first (i.e. replacing β by 1 – β). If β = 1, then (bmn) 

propagates in it’s entirely and (bdn) dies. In contrast, if β = 0, then (bdn) propagates in it’s entirely and (bmn) dies. When β = 0.5, 

the result is an average of the variables of the two parents. This method demonstrated to work well on several interesting 

problems. Choosing which variables to blend is the next issue. Sometimes, this linear combination process is done for all 

variables to the right or to the left of some crossover point. Any number of points can be chosen to blend, up to (Nvar) values 

where all variables are linear combinations of those of the two parents. If the first variable of the chromosomes is selected, then 

only the variables to the right of the selected variable are swapped. If the last variable of the chromosomes is selected, then only 

the variables to the left of the selected variable are swapped. This method does not allow offspring variables outside the bounds 

set by the parent unless  

β > 1.  

G. Mutation 

      Random mutations alter a certain percentage of the genes in the list of chromosomes. If care is not taken, the genetic 

algorithm can converge too quickly into one region of the cost surface. If this area is in the region of the global minimum, that is 

good. However, some functions, such as the one we are modeling, have many local minima. If nothing is done to solve this 

tendency to converge quickly, it may end up in a local rather than a global minimum. To avoid this problem of overly fast 

convergence (premature convergence), the routine is forced to explore other areas of the cost surface by randomly introducing 

changes, or mutations, in some of the variables. Mutation points are randomly selected from the (Nind×Nvar), total number of 

genes in the population matrix. Increasing the number of mutations increases the algorithm’s freedom to search outside the 

current region of variable space. It also tends to distract the algorithm from converging on a popular solution.                                                                                                                                                    

With the process of the crossover and mutation taking place, there is a high chance that the optimum solution could be 

lost as there is no guarantee that these operators will preserve the fittest string. To counteract this, elitist models are often used. In 

an elitist model, the best individual in the population is saved before any of these operations take place. After the new population 

is formed and evaluated, it is examined to see if this best structure has been preserved. If not, the saved copy is reinserted back 

into the population. The genetic algorithm then continues on as normal [6].                

IV. MULTIPLE OBJECTIVE OPTIMIZATION (MOO) 

   

     In many applications, the cost function has multiple, often times, conflicting objectives. The most important approach to MOO 

is: sum of weighted cost functions. The most straightforward approach to multi-objective optimization is to weight each function 

and add them together.  

         N 

cost=∑wifi                                                                                                                                                                                           

(8) 

         i=1  

Where: fi is the cost function (i). 

                                                  N 

wi is the weighting factor and  ∑ wi = 1. 

                                                  i=1  

Implementing this multiple objective optimization approach in a genetic algorithm only requires modifying the cost function to fit 

the form of equation (8) and does not require any modification to the genetic algorithm. Thus,  

 

cost=wf1+(1-w)f2                                                                                                                                                                                (9) 

 

http://www.jetir.org/


May 2016, Volume 3, Issue 5                                  JETIR (ISSN-2349-5162) 

JETIR1605006 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org  33 

 

In load flow problem, (f1) is the mismatch active power (eqn.3) and (f2) is the mismatch reactive power (eqn.4) for each bus 

except the slack busbar. This approach is adopted in this work for its simplicity, ease of programming and gives us the required 

accuracy. Here, (w) is chosen to be (0.5), since the two objective functions (f1) and (f2) have the same degree of importance [7]. 

 

V. SPARSITY TECHNIQUES 

  Sparse matrices are a special class of matrices that contain a significant number of zero-valued elements. This property allows 

to: 

•Store only the nonzero elements of the matrix, together with their indices, to reduce the storage requirements. 

•Reduce the computation time for any arithmetic operation by eliminating operations on zero elements [8]. 

 

A. Sparse matrix storage 

   

     For full matrices, any software package stores internally every matrix element. Zero-valued elements require the same amount 

of storage space as any other matrix element. For sparse matrices, however, the sparsity technique stores only the nonzero 

elements and their indices. For large matrices with a high percentage of zero-valued elements, this scheme significantly reduces 

the amount of memory required for data storage. The implementation of sparsity technique, for example in MATLAB uses three 

arrays internally to store sparse matrices with real elements. Consider an (m-by-n) sparse matrix with (NNZ) nonzero entries 

(NNZ is number of nonzero elements): 

•The first array contains all the nonzero elements of the array in floating-point format. The length of this array is equal to (NNZ). 

•The second array contains the corresponding integer row indices for the nonzero elements. This array also has length equal to 

(NNZ). 

•The third array contains integer pointers to the start of each column. This array has length equal to (n). 

This matrix requires storage for (NNZ) floating-point numbers and (NNZ+n) integers. At 8 bytes per floating-point number and 4 

bytes per integer, the total number of bytes required to store a sparse matrix is:                         

 

Grand total of bytes=8*NNZ+4*(NNZ+n)                                                                                                                                       

(10) 

 

   Sparse matrices with complex elements are also possible. In this case, it uses a fourth array with (NNZ) elements to store the 

imaginary parts of the nonzero elements. An element is considered nonzero if either its real or imaginary part is nonzero. 

 

B. Creating Sparse Matrices 

   

     Every software package never creates sparse matrices automatically. Instead, we must determine if a matrix contains a large 

enough percentage of zeros to benefit from sparse techniques. The density of a matrix is the number of nonzero elements divided 

by the total number of matrix elements. Matrices with very low density are often good candidates for use of the sparse format. In 

contrast, the matrix sparsity is the number of zero elements divided by the total number of matrix elements. Matrices with very 

high matrix sparsity are often good candidate for use of the sparse format.                 

C. Viewing sparse matrix       

    We can provide a number of functions that let us get quantitative or graphical information about sparse matrices. The 

MATLAB’s commands provide high-level information about matrix storage, including size and storage class. For example, the 

following list shows information about sparse and full versions of the same matrix: 

 

               Illustration example: 

Name          Size               Bytes           Class 

M_full  (1100x1100)     9680000     double array 

M_sparse(1100x1100)     4404         sparse array 

Grand total is (1210000) elements using (9684404 bytes). Notice that the number of bytes used is much less in the sparse case, 

because zero-valued elements are not stored. In this case, the density of the sparse matrix is (4404/9680000), or approximately 

0.00045 (0.045%). 

VI.. THE PROPOSED METHOD: MULTI-OBJECTIVE REAL-CODED GENETIC ALGORITHM WITH SPARSITY 

TECHNIQUE (IMPLEMENTATION AND RESULTS) 

 

        Three test systems were used to demonstrate the performance of the proposed method, namely: 

1. 14-bus IEEE International test system which consists of: 1 slack bus, 4 generator busses (PV) and   9 load buses (PQ), with 20   

    branches [3]. 

2. 30-bus IEEE test system [3], which consists of:1 slack bus, 5 generator buses (PV) and 24 load buses (PQ), with 41 branches. 

3. Iraqi National Grid (ING), which consists of 362 busbars.1 slack bus, 29 generator bus (PV) and 332 load bus (PQ), with 599   

    branches. 

The load flow solution using real-coded genetic algorithm programs with and without sparsity technique  have been developed by 

the use of MATLAB version7, and tested with   a Pentium 4, 3GHz (Cache 2M) PC with 2GB RAM. Table I illustrates the power 

flow solution for 14-bus IEEE test system using RCGA with sparsity technique with two objective functions which are the 
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mismatch active and reactive powers at each bus according to its constraints except the slack bus. The sum of weighted cost 

functions is used. Because of the stochastic nature of the genetic algorithm process, each independent run will probably produce a 

different number of generations and consequently the computation time and the best amongst these should be chosen. The best of 

the 10 implementation runs is shown in the table. The total computation time was 4.15 sec while the total computational time 

without using sparsity technique was 7.156 sec with the same accuracy (cost function ≤ 0.001 p.u., corresponding to 0.1 

MW/MVAr). Table II illustrates the reduction in computational time and storage requirements for different power systems by 

using the proposed method. The reduction in computational time and storage requirements increase as matrix density decreases or 

in other words matrix sparsity increases.                                                                                                                            

                                                                                            

                                                                                                        

VII. CONCLUSIONS 

    

The proposed method (RCGA with sparsity technique) presented in this paper is much faster and has less storage requirements 

than the simple genetic algorithm. Thus it can be concluded that the proposed method can be implemented on-line for small and 

medium-scale power systems and it can be used for planning study for large-scale systems. The proposed method has reliable 

convergence and high accuracy of solution. Whereas the traditional numerical techniques (Gauss-Seidel, Newton-Raphson, Fast 

decoupled,…etc.) use the characteristics of the problem to determine the next sampling point (e.g. gradient, linearity and 

continuity), genetic algorithm makes no such assumptions. Instead, the next sampled point is determined based on stochastic 

sampling or decision rules rather than on a set of deterministic decision rules. Also, whereas the traditional numerical techniques 

mentioned above use a single point at a time to search the problem space, genetic algorithm uses a population of candidate 

solutions for solving the problem. Thus, reducing the possibility of ending at a local minima.                                                                         

Table I. Power flow solution of 14-bus IEEE test system by the RCGA with sparsity technique method with a standard accuracy 

of (cost function ≤ 0.001 p.u.) 

 

 

 

 

 

 

 

 

 

 

 

                              

                                         

 

 

 

*Total Computational Time using RCGA without Sparsity Technique = 7.156 sec. 

Bus 
Active power 

Reactive 

power 
Voltage Voltage No. of 

No. mismatch(p.u) mismatch(p.u) magnitude(p.u) angle(deg.) generations 

1 Slack Slack 1.06 0.00 ـــــ 

2 0.000329 PV 1.045 -3.2117 15 

3 0.000131 PV 1.00 -4.35826 6 

4 0.000484 0.000689 1.041 -6.14362 19 

5 0.000890 0.000113 1.045 -12.4235 40 

6 0.000798 PV 1.07 6.30252 75 

7 0.000365 0.000324 1.071 -4.6541 87 

8 0.000222 PV 1.09 -1.71203 101 

9 0.000185 0.000605 1.06 1.44081 72 

10 0.000273 0.000321 1.063 -9.00316 18 

11 0.000950 0.000221 1.063 -5.48283 90 

12 0.000411 0.000536 1.061 7.67754 43 

13 0.000770 0.0005215 1.059 -11.0288 29 

14 0.000209 0.000765 1.056 -3.34466 47 

*Total Computational Time: 
  

     4.15 sec. 

Type of 

power 

system 

Matrix 

density 

of [Y] 

%Reduction in 

Computation 

Time            

Enhanced 

RCGA  

%Reduction in 

Storage 

Requirement  

Enhanced 

RCGA  

 

14-bus 

IEEE 

 

17.34% 

 

97.48% 

 

60% 

http://www.jetir.org/


May 2016, Volume 3, Issue 5                                  JETIR (ISSN-2349-5162) 

JETIR1605006 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org  35 

 

 

 

 

 

 

 

 

 

 

 

Table II. Comparison of reduction in computation time and storage requirement for different power systems using The RCGA 

with sparsity technique method 
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